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Abstract
Development of sensitive enzymatic methods for hydrogen peroxide is key for the 
quantification of several bioconstituents such as glucose, triglycerides, creatinine, 
and uric acid and so on. Hydrogen peroxide released by the oxidase enzymes 
are quantified by peroxidase enzyme involving spectrophotometry, fluorimetry, 
chemiluminisence, potentiometric sensing, amperometric, coulometric and such 
others. Authors in this line, present a short review on the assay of peroxidase. 
The entire review is divided into three different sections; first the importance of 
peroxidase clinically, secondly peroxidase chemistry with hydrogen peroxide and 
finally its role in the assay of bioconstituents. 

Keywords: Peroxidase; Clinical importance; Oxidase enzymes; Glucose assay; 
Nano sensors

Role of Peroxidase in Clinical 
Assays: A Short Review

Peroxidase: A Clinically Important 
Enzyme
Peroxidases are widely distributed in nature especially in animal 
and plant cells. Peroxidases comprise of three major categories; 
plant peroxidases, animal peroxidases and catalases. These 
enzymes utilize hydrogen peroxide to catalyze the oxidation of 
variety of organic and inorganic compounds. 

Over the years the development in clinical and diagnostic 
techniques, redox natured reactions are gaining vital importance. 
Biochemical reactions that are redox are gaining prominence in 
basic as well as applied research. Peroxidases are the driving force 
among these as most of the clinically important assays such as 
glucose; creatinine and uric acid determinations cannot be carried 
out without peroxidases. Immobilization of peroxidase enzyme 
has received much attention in the construction of biosensors 
due to economical and easy viability in enzyme immunoassays 
and enzyme linked immunosorbent assays. Keeping the views 
in logical frame work, the authors discuss the important role of 
peroxidase in clinically important assays, its chemistry behind 
hydrogen peroxide reaction extending to assay of diabetically 
important glucose and finally providing a tabulated physiological 
range of biochemical components in blood. 

Peroxidase: A Friend to Oxidase 
Enzymes
The reactions catalyzed by peroxidases can be grouped 

into oxidative dehydrogenation, oxygen transfer, oxidative 
halogenations and hydrogen peroxide dismutation. Among 
these, oxidative dehydrogenation has greater application in 
analytical biochemistry. 

Peroxidases are having great potential application as they can 
be used in a diagnostic kit for hydrogen peroxide, glucose and 
oxidase enzyme determination [1]. In particular, HRP are widely 
used in research areas such as enzymology, biochemistry, 
medicine, genetics, physiology, histo and cyto chemistry because 
of easy availability, economical and high catalytic activity [2]. The 
commercial production of peroxidase has increased due to its 
analytical diagnostics particularly biosensing, in immunosensors 
and in nucleic acid detection. Heme proteins named peroxisomes 
are present in high concentration in cell compartments preventing 
excessive accumulation of peroxide, a powerful oxidizing agent. 
HRP meets the entire requirements for successful analytical 
enzymology because of its specificity, flexibility in assay, stability, 
sensitivity of detection, and availability in pure form. HRP on 
coupling with oxidase enzyme can be used for analysis of wide 
range of analytes such as glucose, cholesterol, lactic acid, choline, 
xanthine, uric acid, bilirubin, and creatinine. 

Combination of peroxidase and indole-3-acetic acid is currently 
being used as a cancer therapeutic agent [3]. The therapeutic 
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procedure involves two steps; first decoding of enzyme in the 
tumor cells, second administering specific prodrug, indole-3-
acetic acid which gets converted into cytotoxic drug by the 
enzyme expressed in the target tumor. The decarboxylated form 
of radical cation indole-3-acetic acid can conjugate with DNA 
and other biological nucleophiles [4]. Some other anticancer 
strategies adopted include antibody and polymer directed 
enzyme/prodrug therapy. 

Chemistry of Reaction between 
Peroxidase and Hydrogen Peroxide
Peroxidases can catalyze a variety of organic substrates such as 
phenols, and aromatic amines with two step three intermediate 
cyclic processes. The process is as under

Step I: The formation of HRP-I with the incorporation of oxygen 
by the reaction with hydrogen peroxide (oxoferryl). The oxidation 
state of iron is +4 along with porphyrins-π-radical cation. 

R    Fe3+ + H2O2    R  Fe4+=O + H2O                  (1)

               HRP                                                 HRP-I

Step II:  This HRP-II has a tendency to oxidize organic substrates 
by single electron transfer mechanism

HRP-I + AH2   HRP-II + AH.                                (2)

Step III: The conversion of HRP to native state by second substrate 
molecule. 

HRP-II + AH2    HRP +  AH.                             (3)

The structures of oxoferryl species as confirmed by different 
research groups.

The initial steps of the reaction between peroxidase and hydrogen 
peroxide involves the basic amino acid residue (B), in the reaction 
[5] is depicted as:

Protein FeIII + H2O2 + B Protein FeIII OOH- +  BH+               (4)

Protein FeIII OOH- +  BH+ Protein (FeIIIO)  +  H2O + B                  (5)

The intermediate of the reaction is highly unstable with spectrum 
has been reported in cry solvents at temperatures less than -160C 
[6,7] (Scheme 1).

The initial interaction between peroxidase and hydrogen peroxide 

consist the formation of two electron bonds between iron (III) 
and one of the peroxide oxygen’s. The basic amino acid residue 
acts as a mediator in the transfer of proton between α and β 
oxygen which subsequently reacts and loses a molecule of water 
along with the release of basic amino acid residue. The final oxy 
heme structure consists of either a double bond or a dative bond 
with both electrons originating from an oxygen atom. This ferryl 
intermediate is responsible for the formation of hydroxyl free 
radical which in turn causes tissue damage in vivo suggesting that 
the oxygen may dissociate easily from the heme protein. 

The oxyhemoglobin model [5] includes linear, bent, ring, met-
superoxide model and two electron oxidative additions as listed 
in Table 1.

Glucose: An Often Difficult Species for 
Quantification
The two different structures glucose are closed loop and open 
chain. The closed loop α and β structures are in equilibrium 
with each other. The open chain structure has an aldehydic 
reactive group, which can undergoes oxidation resulting in the 
formation of gluconic acid with the concominant formation of 
hydrogen peroxide. The gluconic acids are difficult to quantify 
by the conventional colorimetric methods as carboxylic acids 
are least accessible for colorimetric methods. The blessing in 
disguise is the formation of hydrogen peroxide as a byproduct 
in the oxidation of glucose by glucose oxidase. The hydrogen 
peroxide liberated is active in various instrumental methods 
such as spectrophotometric, fluorimetric, potentiometric, 
amperometric and enzymatic approaches. Enzymes that 
use hydrogen peroxide as a substrate include catalase and 
peroxidase. Catalase decomposes hydrogen peroxide into water 
and oxygen. Oxygen can be determined by monometric or UV-Vis 
spectrophotometric or electrodic methods. Peroxidase converts 
hydrogen peroxide into a highly reactive hydroxyl radical, a 
powerful oxidant. Hydroxyl radical can oxidize various benzene 
centered species into a highly reactive radical intermediate 
which in turn can couple with secondary reagents such as phenol 
or amine to result in colorimetric signal. Enzymes that oxidize 
glucose as a principal substrate include glucose dehydrogenase, 
Quinoprotein glucose dehydrogenase, glucose-1-oxidase, and 
glucose-2-oxidase and glucose oxidase. Glucose oxidase is the 
only enzyme used in the oxidation of glucose because glucose 

Scheme 1 Formation of ferryl species in cryosolvents.
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dehydrogenase and quinoprotein glucose dehydrogenase are 
specific for β form of glucose with high turnover rates but the 
former is less soluble while the latter is unstable. Glucose-2-
oxidase also oxidizes other carbohydrates such as xylose and 
glucolactone but lack of specificity overrules its use [8]. The 
glucose oxidase can be isolated from variety of sources among 
these Aspergillus niger is very often used. It is more stable in the 
physiological pH at which quantitative analysis can be carried 
out. The most commonly used substrates are o-dianisidine, 
tetremethylbenzidine, ABTS, 4-aminoantipyrine and phenol, 
Guaiacol, pyrogallol, cyanine dyes. Our research group has 
proposed different analytical probes for the assay of hydrogen 
peroxide involving HRP which include PPDD-DMAB, PPDD-NEDA 
and DMA [9]. Nano, a dwarf technology with one of its dimension 
measured in nanometer, are also not left behind in the analysis. 
Nanoparticles mimic the behavior of peroxidase enzyme, and 
they can be used as substitutes for peroxidase in the assay of 
glucose in the physiological range. Use of nanoparticles help 
to overcome certain important constraints like; control of 
temperature in enzymatic assay, involving several steps to 
immobilize the enzyme on the solid support thereby reducing 
the enzyme activity, waste of expensive enzymes because of 
its non-utilization completely, reduce the cost. Nanoparticles 
attracted scientific and technological interest because of ease of 
preparation, biocompatibility, and large surface to volume ratio 
collective oscillations of the surface electrons emitting light in 
the visible range. Table 2 lists some nanosensors used in glucose 
determination. 

Glucose Monitoring Methods: Invasive 
and Non-Invasive 
The normal physiological range of glucose is 3.3-6.6 mM (60 mg/
dL to 120 mg/dL). Frequent glucose determination in diabetic 
patients is required for the maintenance of glucose in blood. The 
invasive methods require regular lancing and finger bleeding. 
The noninvasive methods overcome pain in blood extraction, 
exposure to sharp objects, biohazard materials and the potential 
for increased frequency of testing [19]. The dual enzymatic 

colorimetric method involves glucose oxidase and peroxidase. 
The glucose oxidase catalyses the conversion of β-D-glucose 
by molecular oxygen producing gluconic acid and hydrogen 
peroxide. Glucose oxidase requires redox co-factor, FAD, which 
gets reduced to FADH2. The co-factor is regenerated by molecular 
oxygen with the formation of hydrogen peroxide. Furthermore, 
hydrogen peroxide can be monitored by spectrophotometry, 
fluorimetry, chemiluminisence, potentiometric sensing, 
amperometric, coulometric and such others 

The spectrophotometric, fluorimetric and luminescence 
methods involve the formation of the colored or luminescence 
active product. In potentiometry, amperometry and coulometric, 
the electrons liberated/consumed is directly proportional to the 
number of glucose molecules as shown in Scheme 2. 

Biosensor is in the modification process which was initially 
proposed by Clark and Lyon of Children hospital in Cincinnati. The 
glucose biosensor was composed of oxygen electrode coated with 
a thin layer of glucose oxidase and an outer dialysis membrane. 
Decrease in the concentration of oxygen is taken as a measure of 
glucose concentration in the blood or urine sample. The major 
disadvantage in this is operational potential for hydrogen peroxide 
and oxygen deficit in the samples. The high operating potential 
of biosensors was interfered by ascorbic acid, uric acid and drugs 
like acetoaminophen. These problems led to the development 
of second generation sensors such as ferrocene, ferricyanide, 
quinines, tetrathialfulvene, tetracyanoquinodimethane, thionine 
and methylene blue by the electron mediators to get improved 
performance. The use of mediators was overcome in the third 
generation biosensors, which have direct electron transfer 
reaction between the enzyme and the electrode. 

Other non-invasive approaches include polarimetry [20] Raman 
spectroscopy [21], photoacoustics [22], optical coherence 
tomography [23], and photothermal deflectometer enhanced by 
total internal reflection [24].

As per the World Health Organization diagnosis should be 
ASSURED: Affordable, Sensitive, Specific, User friendly, Rapid and 
robust, Equipment free and Delivery to end users [25]. Point care 
of testing, microfluidic paper based analytical devices is rapid, 
less expensive, and more multiplexed than the instrumental 
analysis. They require small volume of liquid with little or no 
extra instrument for the quantification of biocomponent, a visual 
differentiation is only sufficient in making the near conclusion. 

Model Description of model

Linear Fe O O

Bent
Fe O

O

Ring model Fe
O

O

Met-superoxide Fe+++ O-
2

Two electron oxidative Fe++++

O

O

--

Table 1: Structures of oxyhemoglobin.

Nano substrate Linearity range Reference
Silver nanoprism 0.2-100 μM [10] 

Multiwalled carbon 
nanotube 0-5 mM [11] 

CuS nanoparticle 2-1800 μM [12] 
ZnFe2O4 1.25-18.75   μM [13] 

Mn doped ZnS Quantum 
dots

10-0.1 mM and from 0.1-
1 mM [14] 

Fe3O 4 3.0-1000 μM [15] 
Cupric oxide 0.1-8.0 mM [16] 

Carbon nitride dots 1.0-1.0 mM [17] 
Prussian nanoparticles 0.1-50.0 μM [18] 

Table 2: Glucose linearity range of some nanosensors.
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Enzyme immunoassay describes a broad range of assays to 
qualify and quantify antigens or antibodies. A typical assay 
involves immobilization of antigen with antibody on to a solid 
support. A secondary antibody labeled with peroxidase provides 
a detectable signal in the presence of colorimetric indicator. 
These are extensively used in enzyme linked immuno sorbent 
assays, western blotting and immuno-histochemistry techniques. 
Table 3 provides physiological range of bioconstituents in blood.

Conclusion
Peroxidase has a prominent place in biotechnology and 
associated areas such as microbiology, histochemistry, medicine, 
genetics, and clinical chemistry due to its versatility, viability, 
and economical nature. The major problems with peroxidase 

enzyme are suicide killing with the concominant release of 
hydroxyl radical and lack of analysis at high temperature. Hence 
mutated peroxidase from different plant sources with improved 
stability and activity will be better contender for bioconstituents 
application. The use of nanomaterials which strongly influences 
the properties like stiffness, elasticity, and biocompatibility 
environment for oxidase enzymes can avoid peroxidase in the 
dual enzymatic systems.
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Scheme 2 General scheme for the determination of glucose.
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Secondary enzyme Substrate for 
secondary enzymes

Coenzyme/
cofactor Secondary product Optimal pH Normal physiological 

range of substrates* References

Glucose oxidase β-D-glucose FAD D-glucono-δ-lactone 5.5 60-120 mg/dL [27]
Alcohol oxidase Primary alcohol NAD+ Aldehyde 7.5 - [28]
Lactate oxidase Lactic acid FMN Pyruvic acid 7.2 4-20 mg/dL [29]
Choline oxidase choline FAD Betaine 9-10 - [30]

D-aminoacid oxidase D-aminoacid FAD α-ketoacid - 30-50 mg/dL [31]
L-amino acid oxidase L-aminoacid FMN 2-oxoacid - 30-50 mg/dL [32]

Xanthine oxidase Hypoxanthine FAD Uric acid 7.5 - [33]
Uricase Uric acid Copper Allantoin 6.5-7.5 3.0-7.0 mg/dL [34]

Cholesterol oxidase Cholesterol FAD Cholest-4-en-3-one 7.0-9.0 150- 200 mg/dL** [35]

Polyamine oxidase N1-acetylspermine FAD N1-acetylspermidine and 
3-aminopropanal 7.4 - [36]

Bilirubin oxidase Bilirubin - biliverdin 8.5 0.2-2.0 mg/dL** [37]
Glutamate oxidase L-glutamate FAD 2-oxoglutarate 7 8.0-10.0 mg/dL [37]

Note: Optimum pH depends on the nature of substrates, co-substrates and methodology adopted in the determination

Table 3: Physiological range of bioconstituents in blood (*Reference values from clinical trials books; ** Values refer to total concentration).
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